A Review of Method of Stream data classification through Optimized Feature Evolution Process

نویسندگان

  • Archana Bopche
  • Malti Nagle
  • Hitesh Gupta
چکیده

Dynamic changing nature of stream data are induced a difficulty of training pattern and process of class labeling in classification. The stream data classification has some difficulty such as feature evaluation, data drift, concept evaluation and infinite length. The infinite length and feature evaluation is more realistic problem in stream data classification technique. Different authors used different method such as data miner and tree based approach for reduced such types of issues. In this paper we discuss the stream data classification process and method of these classification techniques. Optimized feature evaluation process reduces the feature evaluation using ensemble technique. The feature evaluation process generates a new class label for classification. Some authors used optimization technique such as neural network, ANT colony optimization and genetic algorithm. The feature optimization technique improved the performance of stream data classification. Optimization technique for feature evaluation process also discussed in this paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

Feature Based Data Stream Classification (FBDC) and Novel Class Detection

Data stream classification poses many challenges to the data mining community. Here this paper solves all the challenges such as infinite length, concept-drift, concept-evolution, and feature-evolution. Since a data stream is theoretically infinite in length, it is impractical to store and use all the historical data for training. Concept-drift is a common phenomenon in data streams, which occu...

متن کامل

Feature extraction of hyperspectral images using boundary semi-labeled samples and hybrid criterion

Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently flexible to cope with the multi-modal distributed data. We propose a new fea...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015